

DINT2FP

Integer to Floating Point Pipelined Converter

ver 2.32

OVERVIEW

The DINT2FP is the **pipelined** integer to floating point converter. The input and output numbers format is according to IEEE-754 standard. DINT2FP supports double word integers (4 Bytes) and single precision real numbers. Convert operation is pipelined to 3 levels. Input data are fed every clock cycle. The first result appears after latency equal to 3 clock periods and next results are available **each clock** cycle. Full precision and accuracy are accomplished.

APPLICATION

- Math coprocessors
- DSP algorithms
- Embedded arithmetic coprocessor
- Data processing & control

KEY FEATURES

- Full IEEE-754 compliance
- Double word integer input numbers (4 Bytes)
- Single precision real output numbers
- Simple interface
- No programming required
- 3 levels pipelining
- Full accuracy and precision
- Results available at every clock
- Fully configurable

All trademarks mentioned in this document are trademarks of their respective owners.

• Fully synthesizable, static synchronous design with no internal tri-states

DELIVERABLES

- Source code:
 - ♦ VHDL Source Code or/and
 - VERILOG Source Code or/and
- ♦ Encrypted, or plain text EDIF netlist
- VHDL & VERILOG test bench environment
 - Active-HDL automatic simulation macros
 - ◊ ModelSim automatic simulation macros
 - NCSim automatic simulation macros
 - Tests with reference responses
 - Technical documentation
 - Installation notes
 - ◊ HDL core specification
- Oatasheet

٠

- Synthesis scripts
- Example application
- Technical support
 - ♦ IP Core implementation support
 - 3 months maintenance
 - Delivery the IP Core updates, minor and major versions changes
 - Delivery the documentation updates
 - Phone & email support

LICENSING

Comprehensible and clearly defined licensing methods without royalty fees make using of IP Core easy and simply.

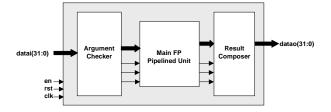
<u>Single Design</u> license allows using IP Core in single FPGA bitstream and ASIC implemen-


http://www.DigitalCoreDesign.com http://www.dcd.pl tation. It also permits FPGA prototyping before ASIC production.

<u>Unlimited Designs</u> license allows using IP Core in unlimited number of FPGA bitstreams and ASIC implementations.

In all cases number of IP Core instantiations within a design, and number of manufactured chips are unlimited. There is no time of use limitations.

- Single Design license for
 - VHDL, Verilog source code called <u>HDL</u> <u>Source</u>
 - Encrypted, or plain text EDIF called <u>Netlist</u>
- Unlimited Designs license for
 - HDL Source
 - Netlist
- Upgrade from
 - Netlist to HDL Source
 - Single Design to Unlimited Designs



PINS DESCRIPTION

PIN	TYPE	DESCRIPTION	
clk	Input	Global system clock	
rst	Input	Global system reset	
en	Input	Enable computing	
datai[31:0]	Input	Data bus input	
datao[31:0]	Output	Data bus output	

BLOCK DIAGRAM

Arguments Checker - performs input data analyze against IEEE-754 number standard compliance. The appropriate numbers and information about the input data classes are given as the results to Main FP Pipelined Unit.

Main FP Pipelined Unit - performs integer to floating point conversion. Gives the complex information about the results to Result Composer module.

Result Composer - performs result rounding function, and data alignment to IEEE-754 standard.

PERFORMANCE

The following table gives a survey about the Core area and performance in the ALTERA® devices after Place & Route :

Device	Speed grade	Logic Cells	F _{max}
FLEX10KE	-1	570	83 MHz
ACEX1K	-1	570	80 MHz
APEX20K	-1	470	61 MHz
APEX20KE	-1	470	73 MHz
APEX20KC	-7	470	87 MHz
APEX-II	-7	470	103 MHz
MERCURY	-5	570	157 MHz
STRATIX	-5	400	150 MHz
CYCLONE	-6	385	156 MHz
STRATIX-II	-3	330	234 MHz
CYCLONE-II	-6	410	149 MHz

Core performance in ALTERA® devices

All trademarks mentioned in this document are trademarks of their respective owners.

http://www.DigitalCoreDesign.com http://www.dcd.pl